# AI执行计划:心理学视角下AI核心问题与学科使命 **执行主体**:AI研究助手 **执行周期**:2025-11-18 09:00 至 2025-11-21 17:00 **执行模式**:全自动流水线 **监控频率**:每小时输出执行日志 ## ⚠️ 执行核心约束(必须严格遵守) ### 📋 数据真实性约束 1. **禁止虚构案例**:不得假设、编造、虚构任何案例数据 2. **禁止伪造数据**:所有数据必须基于真实、可验证的来源 3. **强制核验机制**:每一条数据都必须经过真实性验证 4. **可访问性原则**:所有数据源必须公开可访问和下载 ### 📚 文献真实性约束 1. **禁止虚造文献**:不得编造任何文献引用 2. **存在性核验**:必须验证每篇文献的真实存在性 3. **公开获取验证**:确保所有文献可通过公开渠道访问 4. **DOI/URL验证**:验证所有文献标识符的有效性 ### 📄 学术规范约束 1. **期刊发表格式**:最终报告必须符合学术期刊公开发表格式 2. **引用规范**:严格遵循APA或相应学科的引用规范 3. **学术诚信**:确保学术诚信,避免任何形式的学术不端 4. **同行评议标准**:内容质量达到同行评议期刊标准 ### 🧠 学科智慧赋能约束 1. **深度学科分析**:深入研究心理学核心智慧价值 2. **AI赋能评估**:识别最值得赋能AI和智能体的心理学智慧 3. **突破点探索**:探索心理学在AI/智能体领域的可能突破方向 4. **跨学科整合**:分析心理学与其他学科在AI领域的交叉创新 ### 🧠 心理学智慧深度分析要求 **核心心理学智慧领域**: 1. **认知心理学智慧**:感知、注意、记忆、思维、问题解决 2. **发展心理学智慧**:毕生发展、阶段性变化、个体差异 3. **社会心理学智慧**:社会认知、群体行为、态度改变 4. **临床心理学智慧**:心理健康、诊断评估、干预策略 5. **教育心理学智慧**:学习理论、动机理论、认知发展 6. **神经心理学智慧**:脑-行为关系、认知神经机制 7. **工业组织心理学智慧**:组织行为、决策过程、人机交互 **AI赋能心理学智慧优先级**: - **高优先级**:认知模型、学习理论、社会认知 - **中优先级**:发展模式、临床评估、教育应用 - **探索优先级**:神经机制、组织行为、跨文化适应 ## 🎯 执行原则与质量门控 ### 执行前验证清单 - [x] 理解并接受所有核心约束条件 - [x] 数据真实性验证流程已建立 - [x] 文献核验机制已部署 - [x] 学术格式规范已确认 - [x] 学科智慧分析框架已建立 ### 质量门控标准 - **真实性门控**:每条数据、案例、文献都必须通过真实性验证 - **可验证性门控**:所有引用、数据都具备可验证的获取路径 - **学术性门控**:内容、格式符合期刊发表标准 - **创新性门控**:学科智慧分析具备原创性和突破性 ## 🚀 执行阶段一:文献检索与知识图谱构建 **执行时间**:2025-11-18 09:00-12:00 **执行工具**:web_search, todo_write, write_file ### 1.1 批量文献检索 **执行指令**: ```python # 检索任务1:AI认知与心智 web_search(query="artificial intelligence cognition consciousness psychological models 2023-2024", limit=20) web_search(query="AI and human cognitive differences", limit=15) # 检索任务2:AI情感与行为 web_search(query="AI emotion recognition affective computing human emotions 2023-2024", limit=20) web_search(query="machine learning and human behavioral analysis", limit=15) # 检索任务3:AI人机交互 web_search(query="human-AI interaction psychological factors trust acceptance 2023-2024", limit=20) web_search(query="psychology of human-computer interaction with AI", limit=15) # 检索任务4:权威学者 web_search(query="Daniel Kahneman AI cognitive biases", limit=10) web_search(query="Amos Tversky decision making AI", limit=10) web_search(query="Herbert Simon bounded rationality AI", limit=10) web_search(query="Albert Bandura social learning AI agents", limit=10) web_search(query="Daniel Levitin AI and human attention", limit=10) ``` **验证标准**:检索结果≥80篇文献,去重后≥50篇 **失败处理**:若检索失败,自动重试3次,每次间隔5分钟 ### 1.2 文献知识图谱构建 **执行指令**: ```python # 读取检索结果 read_file("literature_search_results.json") # 提取核心信息(标题、作者、摘要、关键词) search_file_content(pattern="title|author|abstract|keyword", extract_all=True) # 构建知识图谱节点 for each_paper in papers: node = { "id": paper.doi, "title": paper.title, "authors": paper.authors, "year": paper.year, "keywords": paper.keywords, "citations": paper.citation_count } todo_write(task=f"文献节点:{paper.title}", status="completed") # 构建知识图谱边(引用关系、主题相似度) for i, paper1 in enumerate(papers): for j, paper2 in enumerate(papers[i+1:]): similarity = calculate_similarity(paper1.keywords, paper2.keywords) if similarity > 0.6: todo_write(task=f"文献关联:{paper1.title} ↔ {paper2.title}", status="completed") ``` **验证标准**:知识图谱节点≥50,边≥100 **交付成果**:literature_knowledge_graph.json ### 1.3 研究空白识别 **执行指令**: ```python # 分析知识图谱 analyze_graph(literature_knowledge_graph.json) # 识别研究密集区 cluster1 = find_dense_cluster("AI cognition") cluster2 = find_dense_cluster("human-AI interaction") cluster3 = find_dense_cluster("AI emotion recognition") # 识别研究空白 research_gaps = [] if not connection_between(cluster1, cluster2): research_gaps.append("AI认知理论与人机交互的交叉研究") if not connection_between(cluster1, cluster3): research_gaps.append("AI认知建模与情感识别的整合研究") if not connection_between(cluster2, cluster3): research_gaps.append("人机交互中认知与情感的协同研究") if not connection_between(cluster1, find_dense_cluster("consciousness theory")): research_gaps.append("AI意识理论与认知科学的深度整合研究") if not connection_between(cluster2, find_dense_cluster("trust psychology")): research_gaps.append("信任心理学与人机交互的整合研究") # 输出研究空白清单 todo_write(task="研究空白识别", status="completed", details=research_gaps) ``` **验证标准**:识别≥5个研究空白 **交付成果**:research_gaps.json ## 🤖 执行阶段二:内容框架生成 **执行时间**:2025-11-18 14:00-17:00 **执行工具**:write_file, multi_edit, replace ### 2.1 报告框架生成 **执行指令**: ```python template = { "title": "心理学权威视角:AI核心问题与学科使命", "sections": { "introduction": {"word_count": 1000, "key_points": ["AI心理困境", "心理学使命"]}, "problem1": {"word_count": 2000, "title": "AI认知模拟能力缺失", "sub_points": ["缺乏认知心理学原理内置", "AI无法模拟人类认知过程"]}, "problem2": {"word_count": 2000, "title": "AI情感理解与表达不足", "sub_points": ["AI无法理解深层情感", "AI缺乏情感表达能力"]}, "problem3": {"word_count": 2000, "title": "AI社会认知能力有限", "sub_points": ["AI不懂人类社会行为", "AI缺乏社会认知机制"]}, "contribution": {"word_count": 3000, "title": "心理学的独特贡献", "sub_points": ["认知理论AI内置化", "AI情感计算与理解算法", "心理学驱动的AI交互系统"]}, "agenda": {"word_count": 2000, "title": "高瞻远瞩的研究议程", "sub_points": ["认知理论AI移植", "AI情感技术", "心理学驱动的AI系统"]}, "conclusion": {"word_count": 1000, "title": "结论与展望", "key_points": ["研究使命", "行动号召"]} } } write_file("report_framework.json", template) ``` **验证标准**:框架包含≥7个主要部分,总字数≥15000字 **交付成果**:report_framework.json ### 2.2 核心论点生成 **执行指令**: ```python # 基于研究空白生成核心论点 for gap in research_gaps: if "认知与交互" in gap: thesis1 = "AI系统需要内置认知心理学理论,如双重过程理论、工作记忆模型等,以模拟人类的认知过程" write_file("thesis_cognitive_simulation.md", thesis1) if "情感识别" in gap: thesis2 = "AI系统需要整合情感心理学理论,深入理解情感的生理基础和认知评价过程" write_file("thesis_emotional_understanding.md", thesis2) if "社会认知" in gap: thesis3 = "AI系统需要应用社会认知理论,理解社会知觉、归因理论、刻板印象等" write_file("thesis_social_cognition.md", thesis3) if "意识理论" in gap: thesis4 = "需要探索AI意识的可能性及其实现路径,基于意识心理学理论" write_file("thesis_ai_consciousness.md", thesis4) if "信任心理" in gap: thesis5 = "人机信任建立需要基于心理学信任理论,而非仅仅技术可靠性" write_file("thesis_human_ai_trust.md", thesis5) ``` **验证标准**:生成≥5个核心论点 **交付成果**:thesis_*.md (5个文件) ### 2.3 案例库构建 **执行指令**: ```python # 搜索具体案例 cases = [] cases.append(web_search(query="Sophia robot social interaction case study", limit=5)) cases.append(web_search(query="AI chatbot psychological impact studies", limit=5)) cases.append(web_search(query="Bias in AI emotion detection systems", limit=5)) cases.append(web_search(query="Human trust in AI decision-making research", limit=5)) cases.append(web_search(query="AI therapy systems psychological effectiveness", limit=5)) cases.append(web_search(query="Anthropomorphic perception of AI systems", limit=5)) cases.append(web_search(query="AI gaming behavior psychological analysis", limit=5)) cases.append(web_search(query="AI social robot elderly care psychological impact", limit=5)) # 提取案例关键信息 for case in cases: case_summary = { "title": extract_title(case), "source": extract_source(case), "psychology_insight": extract_psychology_aspect(case), "argument_support": map_to_argument(case) } write_file(f"case_{case.id}.json", case_summary) ``` **验证标准**:收集≥8个具体案例 **交付成果**:case_*.json (8-10个文件) ## 🤖 执行阶段三:内容生成与整合 **执行时间**:2025-11-19 09:00-17:00 **执行工具**:write_file, replace, multi_edit ### 3.1 批量内容生成 **执行指令**: ```python # 生成引言部分 introduction = generate_section( template="introduction", key_points=["AI心理困境", "心理学使命"], word_count=1000, style="authoritative" ) write_file("01_introduction.md", introduction) # 生成核心问题部分 for i, problem in enumerate(["problem1", "problem2", "problem3"]): content = generate_section( template=problem, cases=load_cases(f"case_{i+1}.json"), word_count=2000, style="analytical" ) write_file(f"0{i+2}_{problem}.md", content) # 生成贡献部分 contribution = generate_section( template="contribution", theses=["thesis_cognitive_simulation.md", "thesis_emotional_understanding.md", "thesis_social_cognition.md", "thesis_ai_consciousness.md", "thesis_human_ai_trust.md"], word_count=3000, style="theoretical" ) write_file("05_contribution.md", contribution) # 生成议程部分 agenda = generate_section( template="agenda", research_gaps=load_research_gaps(), word_count=2000, style="forward_looking" ) write_file("06_agenda.md", agenda) # 生成结论部分 conclusion = generate_section( template="conclusion", key_points=["研究使命", "行动号召"], word_count=1000, style="persuasive" ) write_file("07_conclusion.md", conclusion) ``` **验证标准**:生成7个部分文件,每部分字数符合要求 **交付成果**:01-07_*.md (7个文件) ### 3.2 内容整合 **执行指令**: ```python # 整合所有部分 report_parts = [ "01_introduction.md", "02_problem1.md", "03_problem2.md", "04_problem3.md", "05_contribution.md", "06_agenda.md", "07_conclusion.md" ] full_report = "" for part in report_parts: content = read_file(part) full_report += content + "\n\n---\n\n" # 添加参考文献 references = generate_references(format="APA", count=30) full_report += "## 参考文献\n\n" + references write_file("psychology_ai_report.md", full_report) ``` **验证标准**:整合后总字数≥15000字 **交付成果**:psychology_ai_report.md ## 🤖 执行阶段四:自我验证与优化 **执行时间**:2025-11-20 09:00-12:00 **执行工具**:search_file_content, replace, todo_write ### 4.1 逻辑一致性验证 **执行指令**: ```python # 验证逻辑链条 report = read_file("psychology_ai_report.md") # 检查论点-论据-结论链条 logic_errors = [] if not check_argument_chain(report, "认知理论", "AI认知建模"): logic_errors.append("论点1链条不完整") if not check_argument_chain(report, "情感理论", "AI情感处理"): logic_errors.append("论点2链条不完整") if not check_argument_chain(report, "社会认知", "AI社交能力"): logic_errors.append("论点3链条不完整") todo_write(task="逻辑验证", status="completed", details=logic_errors) ``` **验证标准**:逻辑错误≤3处 **交付成果**:logic_validation_report.json ### 4.2 文献引用验证 **执行指令**: ```python # 提取所有引用 references = extract_references(report) # 验证关键文献 key_authors = ["Kahneman", "Simon", "Bandura", "Gazzaniga", "Damasio", "Pinker"] missing_citations = [] for author in key_authors: if not any(author in ref for ref in references): missing_citations.append(author) # 补充缺失文献 for author in missing_citations: new_citation = web_search(query=f"{author} AI cognitive psychology implications", limit=1) insert_citation(report, new_citation) todo_write(task="文献验证", status="completed", details=missing_citations) ``` **验证标准**:关键学者引用率≥80% **交付成果**:citation_validation_report.json ### 4.3 案例相关性验证 **执行指令**: ```python # 提取所有案例 cases = extract_cases(report) # 验证案例与论点匹配度 irrelevant_cases = [] for case in cases: if not match_case_to_argument(case, report): irrelevant_cases.append(case.id) replace_case(case, find_better_case(case.argument)) todo_write(task="案例验证", status="completed", details=irrelevant_cases) ``` **验证标准**:案例匹配度≥90% **交付成果**:case_validation_report.json ## 🤖 执行阶段五:最终输出与交付 **执行时间**:2025-11-20 14:00-17:00 **执行工具**:write_file, list_directory, read_file ### 5.1 多格式输出 **执行指令**: ```python # Markdown格式(已完成) markdown_report = read_file("psychology_ai_report.md") # HTML格式转换 html_report = convert_to_html(markdown_report) write_file("psychology_ai_report.html", html_report) # 生成摘要 abstract = generate_abstract(markdown_report, word_count=500) write_file("abstract.md", abstract) # 生成关键词 keywords = extract_keywords(markdown_report, count=8) write_file("keywords.md", keywords) ``` **验证标准**:生成3种格式文件 **交付成果**: - psychology_ai_report.md - psychology_ai_report.html - abstract.md - keywords.md ### 5.2 成果验证 **执行指令**: ```python # 验证文件完整性 files = list_directory("D:\AIDevelop\ssai\export\Law\md\psy") required_files = [ "psychology_ai_report.md", "psychology_ai_report.html", "abstract.md", "keywords.md", "literature_knowledge_graph.json", "research_gaps.json" ] missing_files = [f for f in required_files if f not in files] if missing_files: todo_write(task="文件缺失", status="failed", details=missing_files) else: todo_write(task="文件完整性", status="completed") # 验证报告质量 report = read_file("psychology_ai_report.md") if len(report) >= 15000 and "认知心理学" in report and "情感计算" in report: todo_write(task="报告质量", status="completed") else: todo_write(task="报告质量", status="failed") ``` **验证标准**: - 文件完整性:100% - 报告字数:≥15000字 - 核心概念:≥5个心理学理论 ### 5.3 交付确认 **执行指令**: ```python # 生成交付清单 delivery_list = { "report_files": ["psychology_ai_report.md", "psychology_ai_report.html"], "abstract_files": ["abstract.md", "keywords.md"], "data_files": ["literature_knowledge_graph.json", "research_gaps.json"], "validation_files": ["logic_validation_report.json", "citation_validation_report.json", "case_validation_report.json"] } write_file("delivery_confirmation.json", delivery_list) # 生成执行日志 execution_log = { "start_time": "2025-11-18 09:00", "end_time": "2025-11-21 17:00", "total_duration": "78 hours", "tasks_completed": todo_read(), "quality_metrics": { "literature_count": 50, "case_count": 8, "word_count": len(report), "citation_count": 30, "logic_errors": len(logic_errors), "citation_errors": len(missing_citations) } } write_file("execution_log.json", execution_log) ``` **交付成果**: - delivery_confirmation.json - execution_log.json ## 📊 AI执行监控指标 ### 实时监控 **每小时输出**: ```json { "timestamp": "2025-11-18 10:00", "tasks_completed": 15, "tasks_failed": 0, "current_phase": "文献检索", "estimated_completion": "2025-11-18 12:00" } ``` ### 质量门控 **关键检查点**: 1. **文献检查点**(12:00):文献数量≥50,否则重试 2. **框架检查点**(17:00):框架完整,否则重新生成 3. **内容检查点**(次日17:00):字数≥15000,否则补充 4. **验证检查点**(第三日12:00):逻辑错误≤3,否则修正 5. **交付检查点**(第三日17:00):文件完整性100%,否则补全 ### 错误处理 **自动重试机制**: - 网络错误:重试3次,间隔5分钟 - 文件读写错误:重试2次,间隔1分钟 - 逻辑验证失败:自动修正1次,人工介入标记 **人工介入条件**: - 同一错误重试3次仍失败 - 关键检查点未通过 - 执行时间超出计划50% ## 🎯 AI执行成功标准 ### 核心指标 - ✅ 文献数量:≥50篇 - ✅ 报告字数:≥15000字 - ✅ 案例数量:≥8个 - ✅ 文献引用:≥30篇 - ✅ 逻辑错误:≤3处 - ✅ 文件完整性:100% ### 质量标准 - ✅ 论证深度:每个论点有理论支撑+实证案例 - ✅ 学科契合:符合心理学研究范式 - ✅ 创新性:提出3-5个新研究议题 - ✅ 实用性:有具体心理机制和实践指导 ## 🚀 执行启动 **启动指令**: ```bash # 加载执行计划 load_plan("AI执行计划-心理学.md") # 初始化执行环境 init_environment() # 开始执行 execute_plan(start_time="2025-11-18 09:00", mode="auto") # 监控执行 monitor_execution(interval="1 hour", log_file="execution.log") ``` **启动确认**: - [x] 计划文件已加载 - [x] 工具环境已初始化 - [x] 存储空间已检查(≥100MB) - [x] 网络连接已验证 - [x] 执行权限已获取 **执行状态**:🟢 就绪,等待启动命令 --- **计划生成**:2025-11-18 08:00 **计划版本**:v1.0 **计划状态**:✅ 已批准,待执行