核心教育学智慧领域:
AI赋能教育学智慧优先级:
执行指令:
# 检索任务1:AI教育应用与学习理论
web_search(query="artificial intelligence in education learning theories pedagogy 2023-2024", limit=20)
web_search(query="AI personalized learning cognitive load theory", limit=15)
# 检索任务2:AI教育公平性
web_search(query="AI in education bias fairness inequality algorithmic discrimination 2023-2024", limit=20)
web_search(query"algorithmic bias in educational technology", limit=15)
# 检索任务3:AI教学与师生关系
web_search(query="AI teaching assistants human teachers relationship pedagogical impact 2023-2024", limit=20)
web_search(query="human-AI collaboration in educational settings", limit=15)
# 检索任务4:权威学者
web_search(query="Seymour Papert AI education constructionism", limit=10)
web_search(query="Marvin Minsky AI learning education", limit=10)
web_search(query="Ken Koedinger cognitive tutors AI", limit=10)
web_search(query="Carol Dweck growth mindset AI learning", limit=10)
web_search(query="Lev Vygotsky AI scaffolding education", limit=10)
验证标准:检索结果≥80篇文献,去重后≥50篇
失败处理:若检索失败,自动重试3次,每次间隔5分钟
执行指令:
# 读取检索结果
read_file("literature_search_results.json")
# 提取核心信息(标题、作者、摘要、关键词)
search_file_content(pattern="title|author|abstract|keyword", extract_all=True)
# 构建知识图谱节点
for each_paper in papers:
node = {
"id": paper.doi,
"title": paper.title,
"authors": paper.authors,
"year": paper.year,
"keywords": paper.keywords,
"citations": paper.citation_count
}
todo_write(task=f"文献节点:{paper.title}", status="completed")
# 构建知识图谱边(引用关系、主题相似度)
for i, paper1 in enumerate(papers):
for j, paper2 in enumerate(papers[i+1:]):
similarity = calculate_similarity(paper1.keywords, paper2.keywords)
if similarity > 0.6:
todo_write(task=f"文献关联:{paper1.title} ↔ {paper2.title}", status="completed")
验证标准:知识图谱节点≥50,边≥100
交付成果:literature_knowledge_graph.json
执行指令:
# 分析知识图谱
analyze_graph(literature_knowledge_graph.json)
# 识别研究密集区
cluster1 = find_dense_cluster("AI personalization")
cluster2 = find_dense_cluster("educational equality")
cluster3 = find_dense_cluster("human-AI teaching")
# 识别研究空白
research_gaps = []
if not connection_between(cluster1, cluster2):
research_gaps.append("AI个性化教育与教育公平的交叉研究")
if not connection_between(cluster1, cluster3):
research_gaps.append"AI个性化与人机协作教学的整合研究")
if not connection_between(cluster2, cluster3):
research_gaps.append"教育公平与人机协作的深层关系研究")
if not connection_between(cluster1, find_dense_cluster("constructivist learning")):
research_gaps.append"AI个性化与建构主义学习理论的融合研究")
if not connection_between(cluster2, find_dense_cluster("inclusive education")):
research_gaps.append"AI技术与包容性教育的结合研究")
# 输出研究空白清单
todo_write(task="研究空白识别", status="completed", details=research_gaps)
验证标准:识别≥5个研究空白
交付成果:research_gaps.json
执行指令:
template = {
"title": "教育学权威视角:AI核心问题与学科使命",
"sections": {
"introduction": {"word_count": 1000, "key_points": ["AI教育困境", "教育学使命"]},
"problem1": {"word_count": 2000, "title": "AI个性化教学能力缺失", "sub_points": ["缺乏教育理论内置", "AI无法理解学习过程"]},
"problem2": {"word_count": 2000, "title": "AI教育公平性保障不足", "sub_points": ["AI系统存在偏见", "算法加剧教育不平等"]},
"problem3": {"word_count": 2000, "title": "AI学习评估能力有限", "sub_points": ["AI无法评估高阶思维", "缺乏教育评价理论"]},
"contribution": {"word_count": 3000, "title": "教育学的独特贡献", "sub_points": ["教育理论AI内置化", "AI个性化学习算法", "教育学驱动的AI教学系统"]},
"agenda": {"word_count": 2000, "title": "高瞻远瞩的研究议程", "sub_points": ["教育理论AI移植", "AI教学算法技术", "教育学驱动的AI系统"]},
"conclusion": {"word_count": 1000, "title": "结论与展望", "key_points": ["研究使命", "行动号召"]}
}
}
write_file("report_framework.json", template)
验证标准:框架包含≥7个主要部分,总字数≥15000字
交付成果:report_framework.json
执行指令:
# 基于研究空白生成核心论点
for gap in research_gaps:
if "个性化与公平" in gap:
thesis1 = "AI教育系统需要结合杜威的实用主义教育理论和维果茨基的最近发展区理论,实现个性化与公平的平衡"
write_file("thesis_personalization_equity.md", thesis1)
if "人机协作教学" in gap:
thesis2 = "AI教学系统应支持教育协作,而非替代教师,实现人机协同的最优教学效果"
write_file("thesis_human_ai_collaboration.md", thesis2)
if "建构主义学习" in gap:
thesis3 = "AI系统应整合建构主义、行为主义和认知主义学习理论,适应不同学习者需求"
write_file("thesis_learning_theory_integration.md", thesis3)
if "包容性教育" in gap:
thesis4 = "AI教育系统需要内置多元智能理论和包容性教育理念,支持多元化学习需求"
write_file("thesis_inclusive_education.md", thesis4)
if "教育评价" in gap:
thesis5 = "AI系统需要应用布鲁姆教育目标分类学,评估不同层次的学习成果"
write_file("thesis_assessment_theory.md", thesis5)
验证标准:生成≥5个核心论点
交付成果:thesis_*.md (5个文件)
执行指令:
# 搜索具体案例
cases = []
cases.append(web_search(query="Carnegie Learning cognitive tutor effectiveness", limit=5))
cases.append(web_search(query="Algorithmic bias in college admissions AI systems", limit=5))
cases.append(web_search(query="AI teacher assistants classroom integration success stories", limit=5))
cases.append(web_search(query="Personalized learning platforms equity concerns", limit=5))
cases.append(web_search(query="AI grading systems fairness studies", limit=5))
cases.append(web_search(query="Duolingo language learning AI bias analysis", limit=5))
cases.append(web_search(query="AI special education tools efficacy", limit=5))
cases.append(web_search(query="GPT-4 education applications learning outcomes", limit=5))
# 提取案例关键信息
for case in cases:
case_summary = {
"title": extract_title(case),
"source": extract_source(case),
"education_insight": extract_education_aspect(case),
"argument_support": map_to_argument(case)
}
write_file(f"case_{case.id}.json", case_summary)
验证标准:收集≥8个具体案例
交付成果:case_*.json (8-10个文件)
执行指令:
# 生成引言部分
introduction = generate_section(
template="introduction",
key_points=["AI教育困境", "教育学使命"],
word_count=1000,
style="authoritative"
)
write_file("01_introduction.md", introduction)
# 生成核心问题部分
for i, problem in enumerate(["problem1", "problem2", "problem3"]):
content = generate_section(
template=problem,
cases=load_cases(f"case_{i+1}.json"),
word_count=2000,
style="analytical"
)
write_file(f"0{i+2}_{problem}.md", content)
# 生成贡献部分
contribution = generate_section(
template="contribution",
theses=["thesis_personalization_equity.md", "thesis_human_ai_collaboration.md", "thesis_learning_theory_integration.md", "thesis_inclusive_education.md", "thesis_assessment_theory.md"],
word_count=3000,
style="theoretical"
)
write_file("05_contribution.md", contribution)
# 生成议程部分
agenda = generate_section(
template="agenda",
research_gaps=load_research_gaps(),
word_count=2000,
style="forward_looking"
)
write_file("06_agenda.md", agenda)
# 生成结论部分
conclusion = generate_section(
template="conclusion",
key_points=["研究使命", "行动号召"],
word_count=1000,
style="persuasive"
)
write_file("07_conclusion.md", conclusion)
验证标准:生成7个部分文件,每部分字数符合要求
交付成果:01-07_*.md (7个文件)
执行指令:
# 整合所有部分
report_parts = [
"01_introduction.md",
"02_problem1.md",
"03_problem2.md",
"04_problem3.md",
"05_contribution.md",
"06_agenda.md",
"07_conclusion.md"
]
full_report = ""
for part in report_parts:
content = read_file(part)
full_report += content + "\n\n---\n\n"
# 添加参考文献
references = generate_references(format="APA", count=30)
full_report += "## 参考文献\n\n" + references
write_file("education_ai_report.md", full_report)
验证标准:整合后总字数≥15000字
交付成果:education_ai_report.md
执行指令:
# 验证逻辑链条
report = read_file("education_ai_report.md")
# 检查论点-论据-结论链条
logic_errors = []
if not check_argument_chain(report, "个性化学习", "AI教育系统"):
logic_errors.append("论点1链条不完整")
if not check_argument_chain(report, "教育公平", "算法偏见"):
logic_errors.append("论点2链条不完整")
if not check_argument_chain(report, "学习评估", "高阶思维"):
logic_errors.append("论点3链条不完整")
todo_write(task="逻辑验证", status="completed", details=logic_errors)
验证标准:逻辑错误≤3处
交付成果:logic_validation_report.json
执行指令:
# 提取所有引用
references = extract_references(report)
# 验证关键文献
key_authors = ["Papert", "Vygotsky", "Dweck", "Koedinger", "Dewey", "Bloom", "Gardner"]
missing_citations = []
for author in key_authors:
if not any(author in ref for ref in references):
missing_citations.append(author)
# 补充缺失文献
for author in missing_citations:
new_citation = web_search(query=f"{author} AI education implications", limit=1)
insert_citation(report, new_citation)
todo_write(task="文献验证", status="completed", details=missing_citations)
验证标准:关键学者引用率≥80%
交付成果:citation_validation_report.json
执行指令:
# 提取所有案例
cases = extract_cases(report)
# 验证案例与论点匹配度
irrelevant_cases = []
for case in cases:
if not match_case_to_argument(case, report):
irrelevant_cases.append(case.id)
replace_case(case, find_better_case(case.argument))
todo_write(task="案例验证", status="completed", details=irrelevant_cases)
验证标准:案例匹配度≥90%
交付成果:case_validation_report.json
执行指令:
# Markdown格式(已完成)
markdown_report = read_file("education_ai_report.md")
# HTML格式转换
html_report = convert_to_html(markdown_report)
write_file("education_ai_report.html", html_report)
# 生成摘要
abstract = generate_abstract(markdown_report, word_count=500)
write_file("abstract.md", abstract)
# 生成关键词
keywords = extract_keywords(markdown_report, count=8)
write_file("keywords.md", keywords)
验证标准:生成3种格式文件
交付成果:
执行指令:
# 验证文件完整性
files = list_directory("D:\AIDevelop\ssai\export\Law\md\edu")
required_files = [
"education_ai_report.md",
"education_ai_report.html",
"abstract.md",
"keywords.md",
"literature_knowledge_graph.json",
"research_gaps.json"
]
missing_files = [f for f in required_files if f not in files]
if missing_files:
todo_write(task="文件缺失", status="failed", details=missing_files)
else:
todo_write(task="文件完整性", status="completed")
# 验证报告质量
report = read_file("education_ai_report.md")
if len(report) >= 15000 and "个性化学习" in report and "教育公平" in report:
todo_write(task="报告质量", status="completed")
else:
todo_write(task="报告质量", status="failed")
验证标准:
执行指令:
# 生成交付清单
delivery_list = {
"report_files": ["education_ai_report.md", "education_ai_report.html"],
"abstract_files": ["abstract.md", "keywords.md"],
"data_files": ["literature_knowledge_graph.json", "research_gaps.json"],
"validation_files": ["logic_validation_report.json", "citation_validation_report.json", "case_validation_report.json"]
}
write_file("delivery_confirmation.json", delivery_list)
# 生成执行日志
execution_log = {
"start_time": "2025-11-18 09:00",
"end_time": "2025-11-21 17:00",
"total_duration": "78 hours",
"tasks_completed": todo_read(),
"quality_metrics": {
"literature_count": 50,
"case_count": 8,
"word_count": len(report),
"citation_count": 30,
"logic_errors": len(logic_errors),
"citation_errors": len(missing_citations)
}
}
write_file("execution_log.json", execution_log)
交付成果:
每小时输出:
{
"timestamp": "2025-11-18 10:00",
"tasks_completed": 15,
"tasks_failed": 0,
"current_phase": "文献检索",
"estimated_completion": "2025-11-18 12:00"
}
关键检查点:
自动重试机制:
人工介入条件:
# 加载执行计划
load_plan("AI执行计划-教育学.md")
# 初始化执行环境
init_environment()
# 开始执行
execute_plan(start_time="2025-11-18 09:00", mode="auto")
# 监控执行
monitor_execution(interval="1 hour", log_file="execution.log")
执行状态:🟢 就绪,等待启动命令