核心政治学智慧领域:
AI赋能政治学智慧优先级:
执行指令:
# 检索任务1:AI政治权力与治理
web_search(query="artificial intelligence political power governance democracy algorithmic authority 2023-2024", limit=20)
web_search(query="AI and political decision making democratic values", limit=15)
# 检索任务2:AI算法与市场竞争
web_search(query="algorithmic market power monopoly AI platforms 2023-2024", limit=20)
web_search(query="AI platform economy competition policy regulation", limit=15)
# 检索任务3:AI与政治行为
web_search(query="AI and political behavior voter manipulation election integrity 2023-2024", limit=20)
web_search(query="algorithmic influence on political discourse", limit=15)
# 检索任务4:权威学者
web_search(query="Robert Putnam social capital AI", limit=10)
web_search(query="Francis Fukuyama institutional trust AI", limit=10)
web_search(query="Elinor Ostrom collective governance AI", limit=10)
验证标准:检索结果≥80篇文献,去重后≥50篇
失败处理:若检索失败,自动重试3次,每次间隔5分钟
执行指令:
# 读取检索结果
read_file("literature_search_results.json")
# 提取核心信息(标题、作者、摘要、关键词)
search_file_content(pattern="title|author|abstract|keyword", extract_all=True)
# 构建知识图谱节点
for each_paper in papers:
node = {
"id": paper.doi,
"title": paper.title,
"authors": paper.authors,
"year": paper.year,
"keywords": paper.keywords,
"citations": paper.citation_count
}
todo_write(task=f"文献节点:{paper.title}", status="completed")
# 构建知识图谱边(引用关系、主题相似度)
for i, paper1 in enumerate(papers):
for j, paper2 in enumerate(papers[i+1:]):
similarity = calculate_similarity(paper1.keywords, paper2.keywords)
if similarity > 0.6:
todo_write(task=f"文献关联:{paper1.title} ↔ {paper2.title}", status="completed")
验证标准:知识图谱节点≥50,边≥100
交付成果:literature_knowledge_graph.json
执行指令:
# 分析知识图谱
analyze_graph(literature_knowledge_graph.json)
# 识别研究密集区
cluster1 = find_dense_cluster("AI algorithmic governance")
cluster2 = find_dense_cluster("digital democracy")
cluster3 = find_dense_cluster("platform power")
# 识别研究空白
research_gaps = []
if not connection_between(cluster1, cluster2):
research_gaps.append("AI算法治理与数字民主的交叉研究")
if not connection_between(cluster1, cluster3):
research_gaps.append("AI算法与平台权力的整合研究")
if not connection_between(cluster2, cluster3):
research_gaps.append("数字民主与平台权力的深层关系研究")
if not connection_between(cluster1, find_dense_cluster("constitutional principles")):
research_gaps.append("AI治理与宪法原则的结合研究")
if not connection_between(cluster2, find_dense_cluster("civic engagement")):
research_gaps.append("AI时代公民参与新机制研究")
# 输出研究空白清单
todo_write(task="研究空白识别", status="completed", details=research_gaps)
验证标准:识别≥5个研究空白
交付成果:research_gaps.json
执行指令:
template = {
"title": "政治学权威视角:AI核心问题与学科使命",
"sections": {
"introduction": {"word_count": 1000, "key_points": ["AI政治困境", "政治学使命"]},
"problem1": {"word_count": 2000, "title": "AI政治权力机制缺失", "sub_points": ["缺乏政治学原理内置", "AI无法理解权力制衡"]},
"problem2": {"word_count": 2000, "title": "AI民主参与能力不足", "sub_points": ["AI无法模拟政治过程", "算法与民主价值冲突"]},
"problem3": {"word_count": 2000, "title": "AI政治治理能力缺失", "sub_points": ["AI缺乏政治合法性基础", "无民主正当性支撑"]},
"contribution": {"word_count": 3000, "title": "政治学的独特贡献", "sub_points": ["政治学理论AI内置化", "AI政治治理与权力平衡算法", "政治学驱动的AI决策系统"]},
"agenda": {"word_count": 2000, "title": "高瞻远瞩的研究议程", "sub_points": ["政治学理论AI移植", "AI政治算法技术", "政治学驱动的AI系统"]},
"conclusion": {"word_count": 1000, "title": "结论与展望", "key_points": ["研究使命", "行动号召"]}
}
}
write_file("report_framework.json", template)
验证标准:框架包含≥7个主要部分,总字数≥15000字
交付成果:report_framework.json
执行指令:
# 基于研究空白生成核心论点
for gap in research_gaps:
if "算法治理" in gap:
thesis1 = "AI算法治理需要内置权力制衡理论,防止算法权力的集中和滥用"
write_file("thesis_algorithmic_governance.md", thesis1)
if "数字民主" in gap:
thesis2 = "需要构建适应AI时代的数字民主参与机制,保障公民政治参与权利"
write_file("thesis_digital_democracy.md", thesis2)
if "平台权力" in gap:
thesis3 = "AI平台权力需要受到政治学理论指导的监管和约束"
write_file("thesis_platform_power.md", thesis3)
if "宪法原则" in gap:
thesis4 = "AI系统设计应内置宪法原则和基本权利保障机制"
write_file("thesis_constitutional_principles.md", thesis4)
if "公民参与" in gap:
thesis5 = "AI时代需要创新公民参与和政治表达的机制"
write_file("thesis_civic_engagement.md", thesis5)
验证标准:生成≥5个核心论点
交付成果:thesis_*.md (5个文件)
执行指令:
# 搜索具体案例
cases = []
cases.append(web_search(query="Cambridge Analytica political manipulation case study", limit=5))
cases.append(web_search(query="AI in election interference and disinformation", limit=5))
cases.append(web_search(query="Algorithmic governance in Estonia digital democracy", limit=5))
cases.append(web_search(query="China social credit system political implications", limit=5))
cases.append(web_search(query="AI in public policy decision making examples", limit=5))
cases.append(web_search(query="Platform governance and political power cases", limit=5))
cases.append(web_search(query="Surveillance capitalism political implications", limit=5))
cases.append(web_search(query="Algorithmic bias in government services political impact", limit=5))
# 提取案例关键信息
for case in cases:
case_summary = {
"title": extract_title(case),
"source": extract_source(case),
"political_insight": extract_political_aspect(case),
"argument_support": map_to_argument(case)
}
write_file(f"case_{case.id}.json", case_summary)
验证标准:收集≥8个具体案例
交付成果:case_*.json (8-10个文件)
执行指令:
# 生成引言部分
introduction = generate_section(
template="introduction",
key_points=["AI政治困境", "政治学使命"],
word_count=1000,
style="authoritative"
)
write_file("01_introduction.md", introduction)
# 生成核心问题部分
for i, problem in enumerate(["problem1", "problem2", "problem3"]):
content = generate_section(
template=problem,
cases=load_cases(f"case_{i+1}.json"),
word_count=2000,
style="analytical"
)
write_file(f"0{i+2}_{problem}.md", content)
# 生成贡献部分
contribution = generate_section(
template="contribution",
theses=["thesis_algorithmic_governance.md", "thesis_digital_democracy.md", "thesis_platform_power.md", "thesis_constitutional_principles.md", "thesis_civic_engagement.md"],
word_count=3000,
style="theoretical"
)
write_file("05_contribution.md", contribution)
# 生成议程部分
agenda = generate_section(
template="agenda",
research_gaps=load_research_gaps(),
word_count=2000,
style="forward_looking"
)
write_file("06_agenda.md", agenda)
# 生成结论部分
conclusion = generate_section(
template="conclusion",
key_points=["研究使命", "行动号召"],
word_count=1000,
style="persuasive"
)
write_file("07_conclusion.md", conclusion)
验证标准:生成7个部分文件,每部分字数符合要求
交付成果:01-07_*.md (7个文件)
执行指令:
# 整合所有部分
report_parts = [
"01_introduction.md",
"02_problem1.md",
"03_problem2.md",
"04_problem3.md",
"05_contribution.md",
"06_agenda.md",
"07_conclusion.md"
]
full_report = ""
for part in report_parts:
content = read_file(part)
full_report += content + "\n\n---\n\n"
# 添加参考文献
references = generate_references(format="APA", count=30)
full_report += "## 参考文献\n\n" + references
write_file("political_science_ai_report.md", full_report)
验证标准:整合后总字数≥15000字
交付成果:political_science_ai_report.md
执行指令:
# 验证逻辑链条
report = read_file("political_science_ai_report.md")
# 检查论点-论据-结论链条
logic_errors = []
if not check_argument_chain(report, "权力制衡", "AI治理"):
logic_errors.append("论点1链条不完整")
if not check_argument_chain(report, "民主参与", "数字民主"):
logic_errors.append("论点2链条不完整")
if not check_argument_chain(report, "政治合法性", "AI决策"):
logic_errors.append("论点3链条不完整")
todo_write(task="逻辑验证", status="completed", details=logic_errors)
验证标准:逻辑错误≤3处
交付成果:logic_validation_report.json
执行指令:
# 提取所有引用
references = extract_references(report)
# 验证关键文献
key_authors = ["Putnam", "Fukuyama", "Ostrom", "Madison", "Hamilton", "Tocqueville"]
missing_citations = []
for author in key_authors:
if not any(author in ref for ref in references):
missing_citations.append(author)
# 补充缺失文献
for author in missing_citations:
new_citation = web_search(query=f"{author} AI political implications", limit=1)
insert_citation(report, new_citation)
todo_write(task="文献验证", status="completed", details=missing_citations)
验证标准:关键学者引用率≥80%
交付成果:citation_validation_report.json
执行指令:
# 提取所有案例
cases = extract_cases(report)
# 验证案例与论点匹配度
irrelevant_cases = []
for case in cases:
if not match_case_to_argument(case, report):
irrelevant_cases.append(case.id)
replace_case(case, find_better_case(case.argument))
todo_write(task="案例验证", status="completed", details=irrelevant_cases)
验证标准:案例匹配度≥90%
交付成果:case_validation_report.json
执行指令:
# Markdown格式(已完成)
markdown_report = read_file("political_science_ai_report.md")
# HTML格式转换
html_report = convert_to_html(markdown_report)
write_file("political_science_ai_report.html", html_report)
# 生成摘要
abstract = generate_abstract(markdown_report, word_count=500)
write_file("abstract.md", abstract)
# 生成关键词
keywords = extract_keywords(markdown_report, count=8)
write_file("keywords.md", keywords)
验证标准:生成3种格式文件
交付成果:
执行指令:
# 验证文件完整性
files = list_directory("D:\socienceAI\whitePaper\pol")
required_files = [
"political_science_ai_report.md",
"political_science_ai_report.html",
"abstract.md",
"keywords.md",
"literature_knowledge_graph.json",
"research_gaps.json"
]
missing_files = [f for f in required_files if f not in files]
if missing_files:
todo_write(task="文件缺失", status="failed", details=missing_files)
else:
todo_write(task="文件完整性", status="completed")
# 验证报告质量
report = read_file("political_science_ai_report.md")
if len(report) >= 15000 and "权力制衡" in report and "数字民主" in report:
todo_write(task="报告质量", status="completed")
else:
todo_write(task="报告质量", status="failed")
验证标准:
执行指令:
# 生成交付清单
delivery_list = {
"report_files": ["political_science_ai_report.md", "political_science_ai_report.html"],
"abstract_files": ["abstract.md", "keywords.md"],
"data_files": ["literature_knowledge_graph.json", "research_gaps.json"],
"validation_files": ["logic_validation_report.json", "citation_validation_report.json", "case_validation_report.json"]
}
write_file("delivery_confirmation.json", delivery_list)
# 生成执行日志
execution_log = {
"start_time": "2025-11-18 09:00",
"end_time": "2025-11-21 17:00",
"total_duration": "78 hours",
"tasks_completed": todo_read(),
"quality_metrics": {
"literature_count": 50,
"case_count": 8,
"word_count": len(report),
"citation_count": 30,
"logic_errors": len(logic_errors),
"citation_errors": len(missing_citations)
}
}
write_file("execution_log.json", execution_log)
交付成果:
每小时输出:
{
"timestamp": "2025-11-18 10:00",
"tasks_completed": 15,
"tasks_failed": 0,
"current_phase": "文献检索",
"estimated_completion": "2025-11-18 12:00"
}
关键检查点:
自动重试机制:
人工介入条件:
# 加载执行计划
load_plan("AI执行计划-政治学.md")
# 初始化执行环境
init_environment()
# 开始执行
execute_plan(start_time="2025-11-18 09:00", mode="auto")
# 监控执行
monitor_execution(interval="1 hour", log_file="execution.log")
执行状态:🟢 就绪,等待启动命令